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LETTER TO THE EDITOR 

Remarks on stochastic resonances 

J-P Eckmannt and L E Thomas48 
t Departement de Physique ThCorique, UniversitC de Genbve, 121 1 Geneve 4, Switzerland 
$ Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903, 
USA 

Received 26 January 1982 

Abstract. A formalism for discussing the notion of stochastic resonance is outlined and 
applied to a simple two-state model. 

Recently, there has been interest in the cooperative effect of an internal random 
mechanism and an extertzal time-periodic driving mechanism on certain dynamical 
systems (Benzi et a1 1981a, b). The contention is that the two mechanisms together 
can enhance the power spectrum of some dynamical variable x ( t )  over a frequency 
interval hw, in which case one speaks of a stochastic resonance. 

Although the notion of stochastic resonance is not well defined by the above (nor 
do we attempt a precise definition here), it should be distinguished from the case of 
a dynamical system with a resonant frequency wo, driven nearly at this frequency, 
and perturbed by a small random component. For the stochastic resonance, only the 
interplay between the random mechanism and periodic driving mechanism is at issue, 
and no underlying ‘natural’ frequency of the dynamical system plays any role. 

The authors, Benzi, Parisi et al, consider a one-dimensional diffusion in a symmetric 
double-well potential with linear time-dependent potential as external driving mechan- 
ism. The analysis of this system is by no means trivial. For example, expected escape 
times from one well to the other will be solutions to two-dimensional partial differential 
equations (the second dimension arising from the time dependence in the problem). 
Nevertheless, after some approximations, the authors do present evidence of a 
stochastic resonance in the power spectrum for the particle position y (t). 

Here, we discuss an even simpler model, a two-state model, with states labelled 
(+) and (-), in which the state changes at an exponentially distributed time with rate 
modified by a time-periodic factor. (Our formalism accommodates other finite- and 
infinite-state models. With suitable modifications, the formalism will accommodate 
diffusions.) As dynamical variables, we consider N ( t ) ,  the number of times the system 
jumps from the (-) state to the (+) state up to time t. In addition to giving integral 
expressions for the moments of N ( t ) ,  we explicitly compute the mean and variance 
of N ( t )  for large t, as a function of the driving frequency w. We show that there is 
an optimal frequency at which N ( t )  is, in a sense made precise below, most periodic-like 
in its behaviour, indicating an enhancement of the power spectrum for N(r)  about 
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this frequency. Finally we conclude with an alternative approach, analysing the sojourn 
time in the (+) and (-) states. 

We now consider the two-state model. Let 

be the solution to the differential equation 

with 

and h+(t),  h-(t) non-negative periodic functions describing the rates at which the 
system changes its state from (+) to (-) and (-) to (+) respectively. The boundary 
conditions for p,(t) are chosen for the sake of definiteness only, and are irrelevant 
to the results below. The parameter 7 is introduced to develop a generating function 
for the process to be studied. For 77 = 1, H,,(t) is a stochastic generator; hence 
p( t )=p1( t )  is a probability vector with p'(t) (p-(t)) the probability that the (+) ((-)) 
state is occupied. Associated with p(t)  is a stochastic process x(t) with x ( t ) = f l  
according to whether the (+) or (-) state is occupied at time t. 

As before, we let N ( t )  be the random process equal to the number of transitions 
executed from (-) to (+), up to time t. Set 

m,(d = CL; 0) +CL, ( d  (4) 
and consider the power series expansion for m,(t) in Q, 

The coefficients {m"(t)} are non-negative and sum to unity since ml(t)  = 1. Moreover 
m"(t)  is homogeneous of degree n in the upper right-hand entry of H,, i.e. h-,  hence 
m"(t)  is the probability that N ( t )  = n. Thus 

m,,(t) = Exp(q"") (6 )  

is the moment generating function for N( t ) ,  where Exp denotes expectation. (If 
7 =e-u, Exp(e-""") is simply the Laplace transform of the measure for N(t) . )  In 
particular, we have 

ExpN"(t) = (~d /b ) "m, ( t ) I ,= i .  (7) 
Manipulation of equations (1)-(4) leads to a second-order ordinary differential 

equation for m,(t), 

with 
m,(O) = 1, dm,(O)/dt = 0, 

which can be converted to an integral equation, 
(9) 
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where K is the integral operator defined by 

To compute moments of N ( t ) ,  equation (7), we note that we need only compute 
m,(t) for 77 near 1. This suggests the Neumann series solution to equation (lo), 

to 

m,(t) = 1 (77 - l)'K'U(t) 
/=0 

with U the function which is identically 1. Combining this with equation (7), we obtain 

The simple model described above is a special case of a more general formalism. 
Let X be a compact Hausdorff space (e.g. a finite set, a bounded closed set in R", 
R" with a point at 00, etc) and let C ( X )  be the space of continuous functions on X. 
Let h: be a stochastic semigroup generator on C ( X )  and let h+(t), h-(t) be operator- 
valued functions on the real line which, for each t, map positive measures on X to 
positive measures on X. Consider the evolution 

with 
ml(t) = e x p ( W p 0  

and K the integral operator defined by 

K m ( r ) = I ' e x p [ ( t - s ) h o ] h - ( s )  0 Is[ 0 T e x p ( f ~ : ( h o - h + - h - ) d u ) ] h + ( s ' ) m ( s ' ) d s ' d s .  

(18) 
(Here U ( t )  = T exp(J:, k(u) du)  denotes the time-ordered exponential and is the 
solution to the differential equation 

dU(t)/dt = k ( t ) U ( t )  

with U($,) = U.) If N ( t )  is the number of transitions from the second copy of X to 
the first copy of X up to time t, then as in equation (6) 

where JX denotes integration over X. The moments of N ( t )  are given by 
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Returning to the two-state model, we consider the particular case 

) -(a + E  cos wt) ?-/(a - E  cos ut) 
a + E  cos of) -(a - E  cos wt) H,( t )=  ( ( 

One finds, for example, that 

Exp N ( t )  =fa t [ l -  2 ~ ’ / ( 4 ~ ’  + w2)] + 0(1) ,  (22) 

where the O(1) terms are of order 1 in 1. As one expects, both the mean and variance 
are proportional to t plus lower-order corrections. 

As a measure of the quality of the periodicity of N ( t )  we consider the quantity 

at var N ( t )  Q(E, 2) = lim 
U U r - r a  ( E x ~ N ( ~ ) ) ~ ‘  

If Q is small we infer that the fluctuations of N ( t ) ,  as estimated by var N ( t ) ,  are small 
in comparison withN2(t) itself; that is, the transitionsfrom (-) to (+) are approximately 
periodic and there is a peak in the power spectrum of N ( t ) .  A graph of Q is given 
in figure 1 for various values of &/a .  Note that Q is identically 1 for E / U  = 0. When 
& / a  = 1 the dip is most pronounced, Qmin equalling about 0.791. 

The dip we see here is rather mild. Benzi eta1 (1981a) observe a more pronounced 
dip in their numerical simulations. We believe that a more complicated barrier 
structure (using e.g. a three-state model) would produce a sharper resonance, because 
at high frequency, f jumps would become less probable than in our model. 

The reader might ask whether the dynamical variable x ( t )  exhibits stochastic 
resonance. (Recall that x ( t )  = *l according to whether the system is in the (+) or (-1 
state at time t.) Let 

Then the power spectrum for x(t) corresponding to the example equation (21) is given 
hv 
- J  

Exp[x^T(w’)] =- A(w - w’) + O( T-”’), 
2a -iw 

0 2 4 6 8 
w / a  

Figure 1. Graph of Q as a function of o / a  for ( E / u ) ’  = $, $, $, 1. 
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where A(w') = 0, w' # 0, A(w') = 1, ut = 0. These relations apparently do not exhibit 
a resonance, indicating that the choice of dynamical variable is important, at least in 
this simple model. 

Finally, we note an alternative but closely related approach to stochastic resonances. 
Rather than considering the f r e q u e n c y  of jumps up to time t, N ( t ) / t ,  we consider 
instead the periods of sojourn in the (+) or (-) states, up to time t. We sketch this 
point of view in the abstract setting of equation (14), with 17 = 1. 

Corresponding to the evolution equation (14) is a process x ( t ,  xo, s), the position 
at time t in XOX, given the position x o  at time s. Because of the time dependence 
of the generator in this equation (the generator is assumed to be periodic with period 
27r/w) the process is certainly not stationary. But the process 

(28) 

defined on (XOX) x [0 ,27r /w)  (res(to+u) denotes the residue of (to+a) mod(27r/w)) 
is stationary in the augmented time (T. With the stationary process in hand, it is then 
straightforward to analyse the sojourn times (cf Eckmann et a1 1981), which we 
now define. 

Let T~ = 0 and set inductively T~ = inf(a > ?-i-lly jumps from a (-) to (+) or (+) to 
(-) state at time (T). Thus T~ is simply the (cr)-time of the jth jump from (+) to (-) 
or (-) to (+) states. The jth sojourn time is then T ~ - T ~ - ~ ;  the average sojourn time 
and higher moments of it are given by 

Y ( ( T ,  xo,  to) = ( x ,  t )  = (x ( (T  + to) ,  X O ,  to) ,  reS(to + (TI 

n = 1,2,  . . . . 1 N  
U(n) = lim - 1 (q - T ~ - ~ ) " ,  

N + w  N j = l  

Under mild hypotheses on the generator of equation (14) these limits exist and are 
equal to their expected values almost surely, 

1 N  

In order to arrive at an analytical expression for U(n) we note that 

(we assume that y ( + 1 )  = lim(J~,i.-l y ( a ) ) .  Setting 

we find 

where p ( y )  is the invariant measure for the process  TO),  TI), ~ ( 7 2 ) ~ .  . . . 

can be written as 
In terms of the generator coefficients of equation (14), the conditional expectations 

W 

T(n,  y )  = -I t" dP,(t) 
0 

(34) 
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with P,(t) the distribution given by 
l i s  

Py( f )  = PrObRn - 7 0 )  > fly (70 )  = Y 1 = ( T  exp Is ( h o b )  - h&)) du)’U(x) (35) 

where y = (x, s), the f is chosen depending on whether x is in the (+) or (-) states, 
and U is the function which is identically 1 on X. (Again, the time-ordered exponential 
is required.) The density p is the (normalised) solution to the integral equation 

dp(y)  = I dK(y,  y’) dp(y’) (36) 

with d K (  y, y’) the probability density that a sojourn begun at y’  belonging to the 
(+) ((-)) states ends by a jump to y’ belonging to the (-) ((+)) states. This density 
is given implicitly by the solution to a Dirichlet problem (cf Feller 1966). If fo is a 
continuous function on the (-) ((+)) states, 

f ( y 9 - I  fo(y)dK(y,  Y’) 

defined on the (+) ((-)) states satisfies the differential equation 

(37) 

af/at+(hA - h : ( t ) ) f =  -h:(t)fo.  (38) 

This equation can be integrated to deduce dK(  y, y’): 

d K (  y, y‘) = [ ( T  exp ~ l ~ ” ” n ’ ”  (ho-  h,(u)) du)’h: ( t ) ]  ( x ,  x’) dt (39) 
t + Z r r n / w  a t ’  

with y = (x, t ) ,  y ’  = (x’, t’). 
One can then study the moments % ( n )  given by equation (33) as a function of w, 

the driving frequency in h,(t). For the two-state model, even with the choice h,(t) = 
(a  f E cos w t )  defined by equation (21), the calculation of p is not elementary (although 
it, along with T(n ,  y), can be determined in low-order perturbation theory in E )  and 
so we do not pursue this program here. We do emphasise that both the function 
T ( n ,  y )  and the density p influence the behaviour of T ( n )  as a function of U ;  a 
resonance will be a collective effect arising from the dependence of T ( n ,  y )  and p on 
w. 

The authors wish to thank Professor Jona-Lasinio for helpful discussions as well as 
calling our attention to Benzi eta1 (1981a, b). 
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